metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetra- μ -acetato- $\kappa^{8}O:O'$ -bis{[2-methylsulfanyl-4-(pyridin-4-yl- κN)pyrimidine]copper(II)}(Cu—Cu)

Hai-Bin Zhu* and Wen-Na Yang

School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: zhuhaibin@seu.edu.cn

Received 12 July 2011; accepted 23 July 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.031; wR factor = 0.097; data-to-parameter ratio = 13.6.

The binuclear title compound, $[Cu_2(CH_3CO_2)_4(C_{10}H_9N_3S)_2]$, comprises a Cu₂(CH₃CO₂)₄ paddle-wheel core axially bound by two 2-methylsulfanyl-4-(pyridin-4-yl)pyrimidine ligands. The complex molecule has an inversion center lying at the mid-point of the Cu-Cu bond.

Related literature

For a related structure, see: Li et al. (2009).

Experimental

Crystal data [Cu₂(C₂H₃O₂)₄(C₁₀H₉N₃S)₂]

 $M_r = 769.82$

Monoclinic, $P2_1/c$ a = 15.192 (2) Å b = 13.003 (2) Å c = 8.6108 (13) Å $\beta = 103.781$ (2)° V = 1652.0 (4) Å ³	Z = 2 Mo K α radiation $\mu = 1.47 \text{ mm}^{-1}$ T = 298 K $0.41 \times 0.25 \times 0.18 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{min} = 0.650, T_{max} = 0.768$	9568 measured reflections 2827 independent reflections 2354 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.097$ S = 1.04 2827 reflections	208 parameters H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.38 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.32 \text{ e} \text{ Å}^{-3}$

Table 1

Selected bond lengths (Å).

Cu1-O1 ⁱ	1.970 (2)	Cu1-O4	1.967 (2)
Cu1-O2	1.967 (2)	Cu1-N1	2.183 (2)
Cu1–O3 ⁱ	1.974 (2)	Cu1-Cu1 ⁱ	2.6299 (7)

Symmetry code: (i) -x + 1, -y, -z + 1.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors acknowledge the Research Program for Excellent Young Teachers of Southeast University (grant No. 3207041202).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2450).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Li, L., Xu, G. & Zhu, H.-B. (2009). Acta Cryst. E65, m476. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2011). E67, m1168 [doi:10.1107/S1600536811029837]

$Tetra-\mu-acetato-\kappa^{8}O:O'-bis\{[2-methylsulfanyl-4-(pyridin-4-yl-\kappa N)pyrimidine]copper(II)\}(Cu-Cu)$

H.-B. Zhu and W.-N. Yang

Comment

In our previous work, we have reported a mononuclear Cu(II) complex with 4-(pyridin-4-yl)pyrimidine-2-sulfonate ligand (Li *et al.*, 2009). Herein, we report a binuclear Cu(II) coordination compound with 2-(methylthio)-4-(pyridin-4yl)pyrimidine (*L*) ligand. The title compound lies on an inversion center with a Cu—Cu separation of 2.6299 (7) Å (Fig. 1). The *L* ligand acts as a terminal ligand *via* its pyridine N atom, with a Cu—N distance of 2.183 (2) Å (Table 1).

Experimental

A mixture of $Cu(CH_3CO_2)_2$ (0.1 mmol), L (0.1 mmol) in ethanol (15 ml) was stirred for 20 min at room temperature. After filtration, the mother liquid was allowed to stand for one week to give blue crystals suitable for X-ray diffraction analysis.

Refinement

H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å and $U_{iso}(H) = 1.2(1.5 \text{ for methyl})U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (A) 1-x, -y, 1-z.]

Tetra- μ -acetato- $\kappa^{8}O:O'$ -bis{[2-methylsulfanyl- 4-(pyridin-4-yl- κN)pyrimidine]copper(II)}(Cu-Cu)

Crystal data	
$[Cu_2(C_2H_3O_2)_4(C_{10}H_9N_3S)_2]$	F(000) = 788
$M_r = 769.82$	$D_{\rm x} = 1.548 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2827 reflections
a = 15.192 (2) Å	$\theta = 2.3 - 25.5^{\circ}$
b = 13.003 (2) Å	$\mu = 1.47 \text{ mm}^{-1}$
c = 8.6108 (13) Å	T = 298 K
$\beta = 103.781 \ (2)^{\circ}$	Block, blue
$V = 1652.0 (4) \text{ Å}^3$	$0.41\times0.25\times0.18~mm$
<i>Z</i> = 2	

Data collection

2827 independent reflections
2354 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.024$
$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
$h = -15 \rightarrow 18$
$k = -15 \rightarrow 15$
$l = -10 \rightarrow 10$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.097$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0614P)^{2} + 0.3763P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2827 reflections	$(\Delta/\sigma)_{max} < 0.001$
208 parameters	$\Delta \rho_{max} = 0.38 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cu1	0.42790 (2)	0.03013 (2)	0.39231 (4)	0.03313 (14)
O2	0.39177 (14)	-0.11545 (15)	0.3826 (3)	0.0474 (5)
O4	0.50560 (15)	-0.00064 (17)	0.2452 (2)	0.0462 (5)
N1	0.31254 (16)	0.08776 (18)	0.2112 (3)	0.0380 (5)
01	0.62838 (15)	-0.05037 (17)	0.4261 (3)	0.0522 (6)
O3	0.51441 (14)	-0.16651 (15)	0.5641 (3)	0.0518 (6)
C14	0.5845 (2)	-0.03341 (19)	0.2841 (4)	0.0396 (7)
C8	0.2390 (2)	0.0311 (2)	0.1478 (4)	0.0440 (7)
H8	0.2376	-0.0368	0.1810	0.053*
C6	0.16582 (19)	0.1693 (2)	-0.0149 (3)	0.0377 (6)
C10	0.2425 (2)	0.2277 (2)	0.0483 (3)	0.0427 (7)
H10	0.2459	0.2956	0.0164	0.051*
C9	0.3132 (2)	0.1843 (2)	0.1582 (3)	0.0410 (7)
Н9	0.3644	0.2243	0.1980	0.049*
C12	0.4403 (2)	-0.1827 (2)	0.4653 (4)	0.0412 (7)
C7	0.1662 (2)	0.0681 (2)	0.0368 (4)	0.0477 (7)
H7	0.1169	0.0256	-0.0042	0.057*
N2	0.02885 (17)	0.1470 (2)	-0.2225 (3)	0.0491 (6)

C5	0.08668 (19)	0.2131 (2)	-0.1331 (3)	0.0417 (7)
C4	0.0726 (2)	0.3178 (3)	-0.1478 (4)	0.0573 (9)
H4	0.1123	0.3640	-0.0846	0.069*
S1	-0.11441 (7)	0.09520 (9)	-0.43675 (14)	0.0806 (3)
N3	-0.0610 (2)	0.2871 (3)	-0.3527 (4)	0.0620 (8)
C13	0.6315 (3)	-0.0562 (3)	0.1536 (4)	0.0579 (9)
H13A	0.5910	-0.0426	0.0517	0.087*
H13B	0.6494	-0.1271	0.1590	0.087*
H13C	0.6842	-0.0133	0.1664	0.087*
C2	-0.0421 (2)	0.1878 (3)	-0.3268 (4)	0.0514 (8)
C11	0.4090 (2)	-0.2928 (2)	0.4448 (5)	0.0609 (9)
H11A	0.4514	-0.3358	0.5166	0.091*
H11B	0.4050	-0.3141	0.3366	0.091*
H11C	0.3504	-0.2986	0.4681	0.091*
C3	-0.0023 (3)	0.3513 (3)	-0.2593 (5)	0.0657 (10)
Н3	-0.0127	0.4216	-0.2707	0.079*
C1	-0.2020 (2)	0.1704 (4)	-0.5637 (5)	0.0900 (14)
H1A	-0.2452	0.1254	-0.6301	0.135*
H1B	-0.1757	0.2145	-0.6298	0.135*
H1C	-0.2319	0.2114	-0.4990	0.135*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0360 (2)	0.0322 (2)	0.0284 (2)	0.00451 (13)	0.00199 (15)	-0.00098 (13)
O2	0.0452 (12)	0.0375 (11)	0.0524 (13)	-0.0012 (9)	-0.0028 (10)	0.0009 (9)
O4	0.0511 (13)	0.0567 (12)	0.0316 (11)	0.0104 (10)	0.0111 (10)	0.0027 (9)
N1	0.0412 (14)	0.0382 (13)	0.0322 (13)	0.0043 (10)	0.0039 (11)	0.0004 (10)
01	0.0528 (13)	0.0680 (15)	0.0362 (12)	0.0198 (11)	0.0116 (11)	0.0003 (10)
03	0.0536 (14)	0.0350 (10)	0.0552 (13)	-0.0022 (10)	-0.0099 (11)	-0.0011 (9)
C14	0.0538 (19)	0.0307 (14)	0.0372 (17)	0.0042 (13)	0.0166 (15)	0.0001 (12)
C8	0.0453 (18)	0.0382 (15)	0.0444 (18)	0.0003 (13)	0.0024 (15)	0.0087 (13)
C6	0.0379 (16)	0.0397 (15)	0.0339 (15)	0.0062 (12)	0.0057 (13)	0.0037 (12)
C10	0.0484 (18)	0.0342 (14)	0.0410 (17)	0.0016 (13)	0.0019 (14)	0.0030 (12)
С9	0.0419 (16)	0.0369 (15)	0.0393 (16)	0.0005 (12)	0.0001 (13)	-0.0026 (12)
C12	0.0482 (18)	0.0357 (15)	0.0396 (17)	-0.0016 (13)	0.0103 (14)	-0.0075 (13)
C7	0.0403 (17)	0.0469 (17)	0.0503 (19)	-0.0071 (14)	-0.0002 (15)	0.0053 (14)
N2	0.0401 (15)	0.0544 (15)	0.0480 (16)	0.0030 (12)	0.0009 (13)	0.0101 (12)
C5	0.0365 (16)	0.0485 (16)	0.0384 (17)	0.0052 (13)	0.0056 (14)	0.0069 (13)
C4	0.053 (2)	0.0488 (18)	0.062 (2)	0.0087 (16)	-0.0018 (17)	0.0036 (16)
S1	0.0607 (6)	0.0805 (7)	0.0812 (8)	-0.0150 (5)	-0.0214 (5)	0.0158 (6)
N3	0.0477 (17)	0.0690 (19)	0.0622 (19)	0.0113 (14)	-0.0007 (15)	0.0157 (15)
C13	0.077 (3)	0.057 (2)	0.047 (2)	0.0175 (18)	0.0314 (19)	0.0038 (16)
C2	0.0376 (17)	0.067 (2)	0.0468 (19)	0.0017 (15)	0.0045 (15)	0.0123 (16)
C11	0.063 (2)	0.0362 (16)	0.076 (2)	-0.0064 (15)	0.0006 (19)	-0.0080 (16)
C3	0.062 (2)	0.052 (2)	0.076 (3)	0.0151 (18)	0.001 (2)	0.0134 (19)
C1	0.045 (2)	0.126 (4)	0.082 (3)	-0.004 (2)	-0.020 (2)	0.018 (3)

Geometric parameters (Å, °)

Cu1—O1 ⁱ	1.970 (2)	C12—C11	1.505 (4)
Cu1—O2	1.967 (2)	С7—Н7	0.9300
Cu1—O3 ⁱ	1.974 (2)	N2—C2	1.338 (4)
Cu1—O4	1.967 (2)	N2—C5	1.335 (4)
Cu1—N1	2.183 (2)	C5—C4	1.379 (4)
Cu1—Cu1 ⁱ	2.6299 (7)	C4—C3	1.373 (5)
O2—C12	1.251 (4)	C4—H4	0.9300
O4—C14	1.241 (4)	S1—C2	1.748 (4)
N1—C9	1.337 (4)	S1—C1	1.796 (4)
N1—C8	1.341 (4)	N3—C2	1.330 (5)
O1—C14	1.265 (4)	N3—C3	1.341 (5)
O3—C12	1.257 (4)	C13—H13A	0.9600
C14—C13	1.498 (4)	С13—Н13В	0.9600
C8—C7	1.366 (4)	C13—H13C	0.9600
С8—Н8	0.9300	CII—HIIA	0.9600
C6—C10	1.388 (4)	CII—HIIB	0.9600
$C_0 = C_1$	1.389 (4)		0.9600
C_{10}	1.491(4) 1.372(4)	C1_H1A	0.9500
C10—H10	0.9300	C1—H1B	0.9600
С9—Н9	0.9300	C1—H1C	0.9600
O4—Cu1—O2	88.92 (9)	02-C12-C11	118.1 (3)
O4—Cu1—O1 ⁱ	168.10 (9)	O3—C12—C11	116.5 (3)
O2—Cu1—O1 ⁱ	89.58 (9)	C8—C7—C6	119.9 (3)
O4—Cu1—O3 ⁱ	89.87 (9)	С8—С7—Н7	120.0
O2—Cu1—O3 ⁱ	168.30 (8)	С6—С7—Н7	120.0
O1 ⁱ —Cu1—O3 ⁱ	89.20 (10)	C2—N2—C5	116.5 (3)
O4—Cu1—N1	96.46 (9)	N2—C5—C4	121.1 (3)
O2—Cu1—N1	97.57 (9)	N2—C5—C6	117.4 (3)
O1 ⁱ —Cu1—N1	95.44 (9)	C4—C5—C6	121.5 (3)
O3 ⁱ —Cu1—N1	94.13 (9)	C3—C4—C5	117.5 (3)
O4—Cu1—Cu1 ⁱ	82.34 (7)	C3—C4—H4	121.3
O2—Cu1—Cu1 ⁱ	85.43 (6)	С5—С4—Н4	121.3
O1 ⁱ —Cu1—Cu1 ⁱ	85.77 (7)	C2—S1—C1	103.5 (2)
O3 ⁱ —Cu1—Cu1 ⁱ	82.88 (6)	C2—N3—C3	114.7 (3)
N1—Cu1—Cu1 ⁱ	176.77 (7)	C14—C13—H13A	109.5
C12—O2—Cu1	121.89 (19)	C14—C13—H13B	109.5
C14—O4—Cu1	125.8 (2)	H13A—C13—H13B	109.5
C9—N1—C8	116.8 (2)	C14—C13—H13C	109.5
C9—N1—Cu1	119.7 (2)	H13A—C13—H13C	109.5
C8—N1—Cu1	123.46 (19)	H13B—C13—H13C	109.5
C14—O1—Cu1	65.15 (17)	N3—C2—N2	127.2 (3)
C12—O3—Cu1	66.66 (15)	N3—C2—S1	119.7 (3)

O4—C14—O1	125.0 (3)	N2—C2—S1	113.1 (3)
O4—C14—C13	117.9 (3)	C12-C11-H11A	109.5
O1—C14—C13	117.1 (3)	C12—C11—H11B	109.5
N1—C8—C7	123.3 (3)	H11A—C11—H11B	109.5
N1—C8—H8	118.4	C12—C11—H11C	109.5
С7—С8—Н8	118.4	H11A—C11—H11C	109.5
C10—C6—C7	117.0 (3)	H11B—C11—H11C	109.5
C10—C6—C5	121.6 (3)	N3—C3—C4	123.0 (3)
C7—C6—C5	121.4 (3)	N3—C3—H3	118.5
C9—C10—C6	119.5 (3)	С4—С3—Н3	118.5
C9—C10—H10	120.3	S1—C1—H1A	109.5
C6—C10—H10	120.3	S1—C1—H1B	109.5
N1—C9—C10	123.5 (3)	H1A—C1—H1B	109.5
N1—C9—H9	118.2	S1—C1—H1C	109.5
С10—С9—Н9	118.2	H1A—C1—H1C	109.5
O2—C12—O3	125.4 (3)	H1B—C1—H1C	109.5
O4—Cu1—O2—C12	81.3 (2)	Cu1—O4—C14—C13	177.6 (2)
O1 ⁱ —Cu1—O2—C12	-86.9 (2)	C9—N1—C8—C7	-1.4 (4)
O3 ⁱ —Cu1—O2—C12	-2.9 (6)	Cu1—N1—C8—C7	178.6 (2)
N1—Cu1—O2—C12	177.7 (2)	C7—C6—C10—C9	-0.9 (4)
Cu1 ⁱ —Cu1—O2—C12	-1.1 (2)	C5—C6—C10—C9	179.2 (3)
O2—Cu1—O4—C14	-85.3 (2)	C8—N1—C9—C10	2.1 (4)
O1 ⁱ —Cu1—O4—C14	-2.5 (6)	Cu1—N1—C9—C10	-178.0 (2)
O3 ⁱ —Cu1—O4—C14	83.0 (2)	C6—C10—C9—N1	-0.9 (4)
N1—Cu1—O4—C14	177.2 (2)	Cu1—O2—C12—C11	-177.5 (2)
Cu1 ⁱ —Cu1—O4—C14	0.2 (2)	N1—C8—C7—C6	-0.4 (5)
O4—Cu1—N1—C9	-80.7 (2)	C10—C6—C7—C8	1.5 (4)
O2—Cu1—N1—C9	-170.5 (2)	C5—C6—C7—C8	-178.6 (3)
O1 ⁱ —Cu1—N1—C9	99.2 (2)	C2—N2—C5—C4	0.6 (4)
O3 ⁱ —Cu1—N1—C9	9.6 (2)	C2—N2—C5—C6	179.4 (3)
O4—Cu1—N1—C8	99.3 (2)	C10-C6-C5-N2	160.4 (3)
O2—Cu1—N1—C8	9.5 (2)	C7—C6—C5—N2	-19.5 (4)
O1 ⁱ —Cu1—N1—C8	-80.8 (2)	C10—C6—C5—C4	-20.7 (4)
O3 ⁱ —Cu1—N1—C8	-170.4 (2)	C7—C6—C5—C4	159.4 (3)
$O4$ — $Cu1$ — $O1^{i}$ — $C14^{i}$	4.2 (6)	N2—C5—C4—C3	-0.9 (5)
$O2$ — $Cu1$ — $O1^{i}$ — $C14^{i}$	86.9 (2)	C6—C5—C4—C3	-179.7 (3)
$O3^{i}$ —Cu1—O1 ⁱ —C14 ⁱ	-81.4 (2)	C3—N3—C2—N2	-1.7 (5)
N1—Cu1—O1 ⁱ —C14 ⁱ	-175.5 (2)	C3—N3—C2—S1	178.5 (3)
Cu1 ⁱ —Cu1—O1 ⁱ —C14 ⁱ	1.5 (2)	C5—N2—C2—N3	0.8 (5)
$O4-Cu1-O3^{i}-C12^{i}$	-82.5 (2)	C5—N2—C2—S1	-179.4 (2)
O2—Cu1—O3 ⁱ —C12 ⁱ	1.5 (6)	C1—S1—C2—N3	-0.4 (3)
O1 ⁱ —Cu1—O3 ⁱ —C12 ⁱ	85.6 (2)	C1—S1—C2—N2	179.7 (2)
N1—Cu1—O3 ⁱ —C12 ⁱ	-179.0 (2)	C2—N3—C3—C4	1.2 (5)
$Cu1^{i}$ — $Cu1$ — $O3^{i}$ — $C12^{i}$	-0.2 (2)	C5—C4—C3—N3	0.0 (6)
Symmetry codes: (i) $-x+1$, $-y$, $-z+1$.			

